48 research outputs found

    Data Compression Approach for Long-Term Monitoring of Pavement Structures

    Get PDF
    Pavement structures are designed to withstand continuous damage during their design life. Damage starts as soon as the pavement is open to traffic and increases with time. If maintenance activities are not considered in the initial design or considered but not applied during the service life, damage will grow to a point where rehabilitation may be the only and most expensive option left. In order to monitor the evolution of damage and its severity in pavement structures, a novel data compression approach based on cumulative measurements from a piezoelectric sensor is presented in this paper. Specifically, the piezoelectric sensor uses a thin film of polyvinylidene fluoride to sense the energy produced by the micro deformation generated due to the application of traffic loads. Epoxy solution has been used to encapsulate the membrane providing hardness and flexibility to withstand the high-loads and the high-temperatures during construction of the asphalt layer. The piezoelectric sensors have been exposed to three months of loading (approximately 1.0 million loads of 65 kN) at the French Institute of Science and Technology for Transport, Development and Networks (IFSTTAR) fatigue carrousel. Notably, the sensors survived the construction and testing. Reference measurements were made with a commercial conventional strain gauge specifically designed for measurements in hot mix asphalt layers. Results from the carrousel successfully demonstrate that the novel approach can be considered as a good indicator of damage progression, thus alleviating the need to measure strains in pavement for the purpose of damage tracking

    Quasi-Self-Powered Piezo-Floating-Gate Sensing Technology for Continuous Monitoring of Large-Scale Bridges

    Get PDF
    Developing a practical framework for long-term structural health monitoring (SHM) of large structures, such as a suspension bridge, poses several major challenges. The next generation of bridge SHM technology needs to continuously monitor conditions and issue early warnings prior to costly repair or catastrophic failures. Additionally, the technology has to interpret effects of rare, high-impact events like earthquakes or hurricanes. The development of this technology has become an even higher priority due to the fact that many of the world's bridges are reaching the end of their designed service lives. Current battery-powered wireless SHM methods use periodic sampling with relatively long sleep-cycles to increase a sensor's operational life. However, long sleep-cycles make the technology vulnerable to missing or misinterpreting the effect of a rare event. To address these practical issues, we present a novel quasi-self-powered sensing solution for long-term and cost-effective monitoring of large-scale bridges. The approach we propose combines our previously reported and validated self-powered Piezo-Floating-Gate (PFG) sensor in conjunction with an ultra-low-power, long-range wireless interface. The physics behind the PFG's operation enable it to continuously capture and store local, cumulative information regarding dynamic loading conditions of the bridge in non-volatile memory. Using extensive numerical and laboratory studies, we demonstrate the capabilities of the PFG sensor for predicting structural conditions. We then present a system level design that adapts PFG sensing for SHM in bridges. A challenging aspect of SHM in large-scale bridges is the need for long-range wireless interrogation, as many portions of the structure are not easily accessible for continual inspection and portions of the bridge cannot be frequently taken out-of-service. We show that by combining self-powered PFG sensors with a small battery and optimized long-range active wireless interface, we can realize a quasi-self-powered system that easily achieves a continuous operating lifespan in excess of 20 years. The efficiency and feasibility of the proposed method is verified in a case study of the Mackinac Bridge in Michigan, the longest suspension bridge across anchorages in the Western Hemisphere. Associated data from the deployment are discussed, in addition to limitations, challenges, and additional considerations for widespread field deployment of the proposed SHM framework

    Elevation of macrophage-derived chemokine in eosinophilic pneumonia : a role of alveolar macrophages

    Get PDF
    Macrophage-derived chemokine (MDC/CCL22) and thymus-and activation-regulated chemokine (TARC/CCL17) are ligands for CC chemokine receptor 4. Recently, TARC has been reported to play a role in the pathogenesis of idiopathic eosinophilic pneumonia (IEP). The purpose of this study was to evaluate the role of MDC in IEP and other interstitial lung diseases (ILDs). MDC and TARC in the bronchoalveolar lavage fluid (BALF) were measured by enzymelinked immunosorbent assay in patients with ILDs and healthy volunteers (HV). We also examined the expression of MDC mRNA in alveolar macrophages (AM) by real-time quantitative reverse transcriptase-polymerase chain reaction. Both MDC and TARC were detected only in BALF obtained from IEP patients. The concentration of MDC was higher than that of TARC in all cases. The level of MDC in IEP correlated with that of TARC. AM from IEP patients expressed a significantly higher amount of MDC than that from HV at the levels of protein and mRNA. MDC in BALF from IEP dramatically decreased when patients achieved remission. These findings suggest that MDC, in addition to TARC, might be involved in the pathogenesis of IEP, and AM play a role in the elevation of MDC in IEP

    Epidermal growth factor receptor-tyrosine kinase inhibitor (gefitinib) augments pneumonitis, but attenuates lung fibrosis in response to radiation injury in rats

    Get PDF
    Background : Gefitinib, an inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, has been reported to be associated with interstitial lung disorders, and their high incidence and mortality have become a matter of great concern, especially in Japan. In this study, we investigated the effect of gefitinib on different phases of radiationinduced lung disorders in an experimental model. Methods : The thoraxes of Wistar rats were irradiated on day 1 with a single X-ray dose of 20 Gy, and gefitinib (50 mg/kg/day) was orally administered from day 1 to 14. The rat lungs were harvested on days 15 and 57 and the bronchoalveolar lavage (BAL) was performed. Results : Gefitinib treatment increased the infiltration of inflammatory cells, which produced more pro-inflammatory cytokines (IL-6, IL-1β), in the lungs of the irradiated rats on days 15 and 57, while gefitinib treatment reduced collagen content of the lungs in irradiated rats and decreased proliferation and EGFR expression in the lung fibroblasts from irradiated rats on day 57. Conclusions : In irradiated rats, gefitinib treatment augmented lung inflammation, including inflammatory cell infiltration and pro-inflammatory cytokine expression, while gefitinib treatment attenuated fibrotic lung remodeling due to the inhibition of lung fibroblast proliferation

    Ethical challenges for the design and conduct of mega-biobanking from Great East Japan Earthquake victims

    Full text link
    corecore